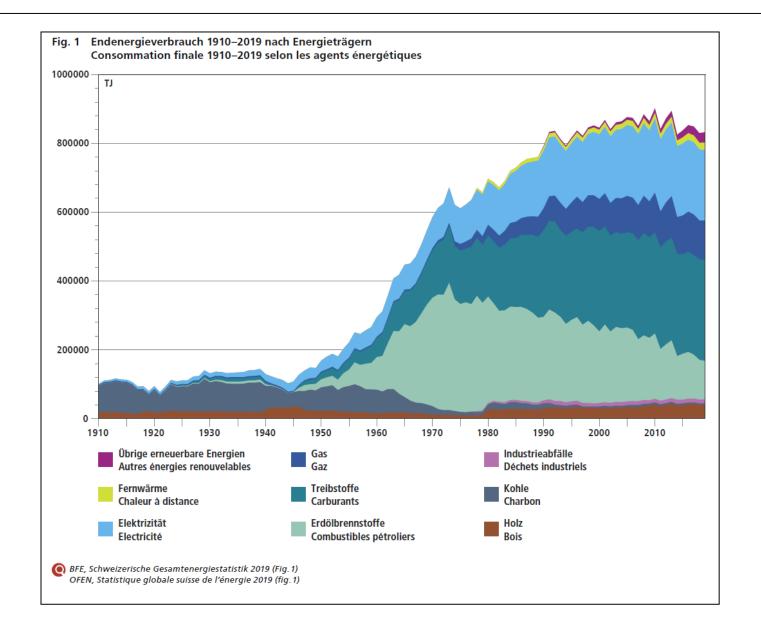


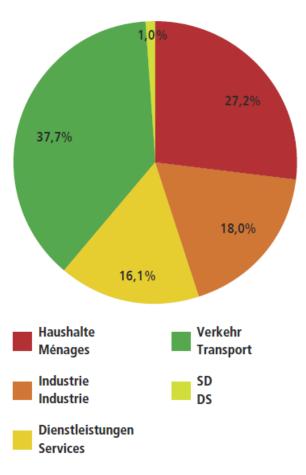
Energieverbrauch optimieren

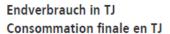
Maya Stalder
Dipl. HS Ing. FH
MAS Nachhaltiges Bauen

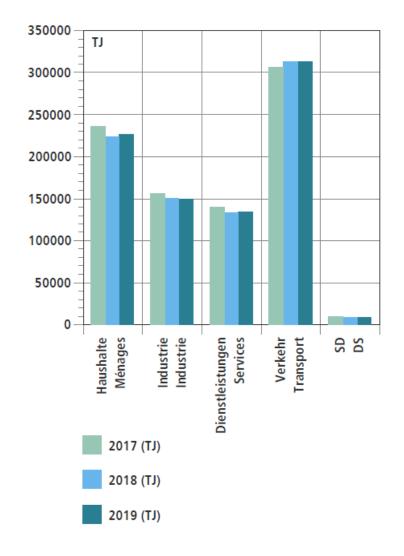

Ablauf

- Entwicklung Energieverbrauch in der Schweiz
- Gebäudehülle Wärmeverluste im Haus
- Gebäudetechnik
- Erneuerbare Energiesysteme
- Fragerunde

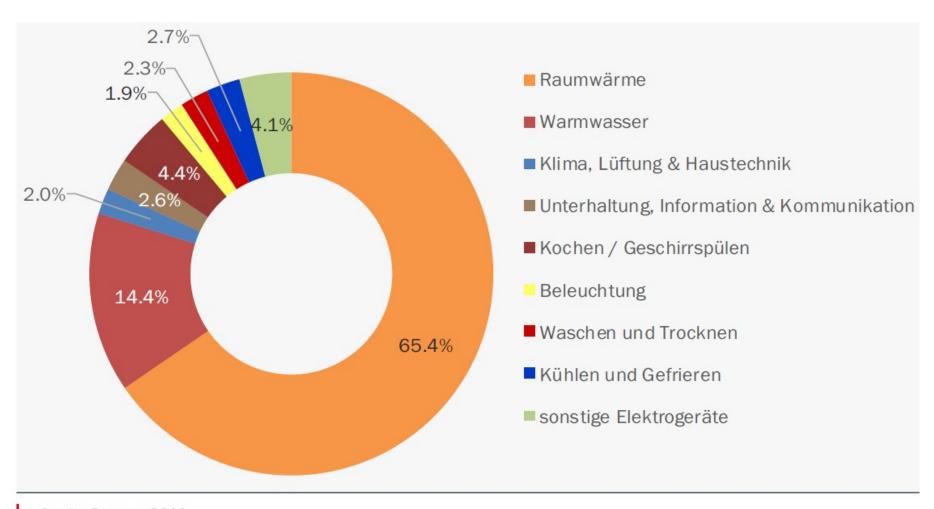
Endenergieverbrauch Energieträger CH



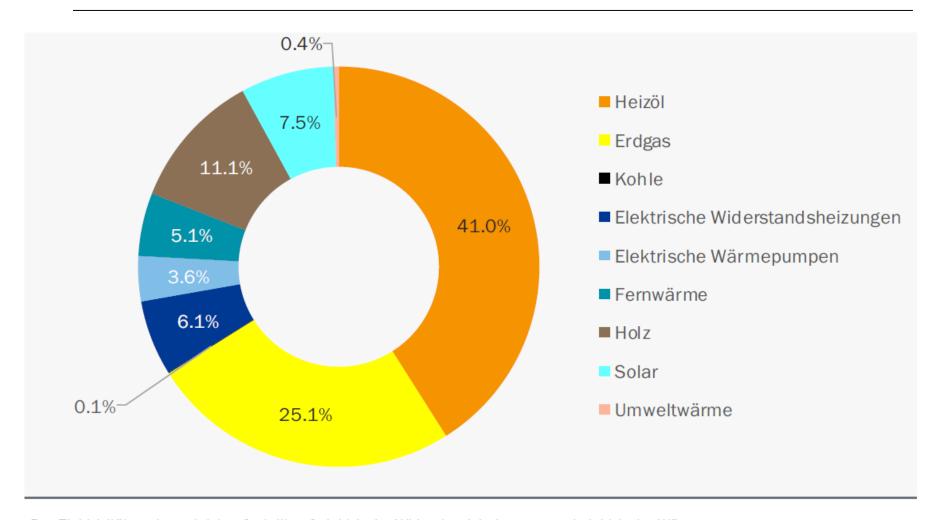

Energieverbrauch 2019, im Vergleich


Anteil 2019 der vier Sektoren in % Parts en 2019 des quatre secteurs en %

SD: Statistische Differenz inklusive Landwirtschaft


DS: Différence statistique y compris l'agriculture

Private Haushalte: Energieverbrauch nach Verwendungszwecken 2018

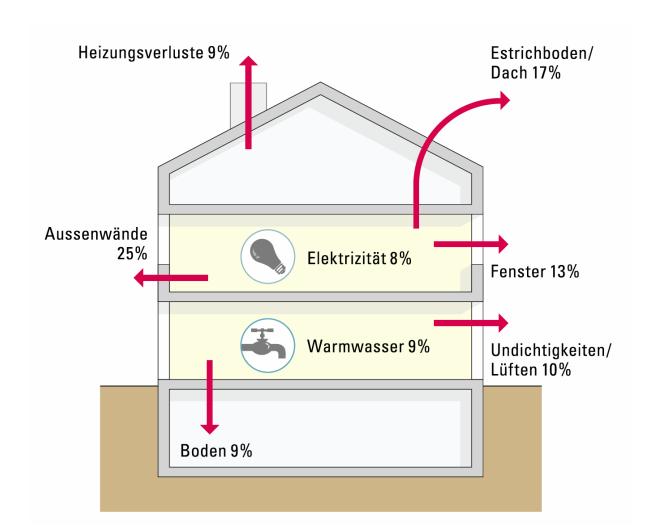


Quelle: Prognos 2019

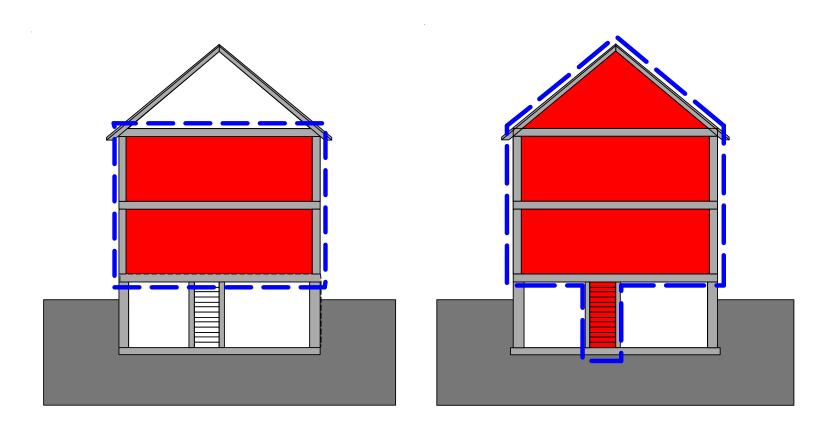
Regionalkonferenz BernMittelland

Heizenergieverbrauch in Privathaushalten 2018

Der Elektrizitätsverbrauch ist aufgeteilt auf elektrische Widerstandsheizungen und elektrische Wärmepumpen


Aktueller Stand Energiegesetzgebung

- Im Bestand ist der Einsatz von fossilen Energieträgern nach wie vor erlaubt
- Strenge Anforderungen in Neubauten (MuKEn 2014)
- Anforderungen an Gebäudehülle bei Sanierungen
- Gesetzgebung wird voraussichtlich verschärft (Bund und Kanton)
- CO2-Abgabe wird voraussichtlich erhöht


Wärmeverluste im Haus

Der Dämmperimeter...

...muss genau definiert werden!

Grundsätzlich gilt:

- Zuerst Gebäudehülle sanieren, danach Heizsystem ersetzen
- Nicht jedes Heiz-System ist für jedes Haus geeignet
- Zukünftig möglichst auf fossile Energie verzichten

Zu hoher Förderdruck im Verteilsystem:

Bis 50% mehr Stromverbrauch der Pumpen. Pfeifende Thermostatventile und schlechte Regulierbarkeit.

Gegenmassnahme:

Umwälzpumpe auf tiefere Stufe stellen oder ersetzen lassen.

<u>Einstellung Heizkurve und Heizgrenze ist nicht dem Bedarf angepasst:</u>

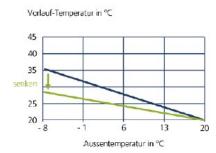
Bis 7% mehr Heizenergieverbrauch

Gegenmassnahme:

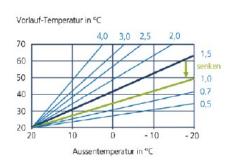
Heizkurve / Heizgrenze korrigieren. Bei Bedarf Heizungsfachmann beiziehen.

Bitte Änderungen an der Heizkurve / Heizgrenze stets schriftlich dokumentieren!!

Heizkurve


1. Raumtemperatur ist bei kalter Witterung (unter 0 °C) zu hoch

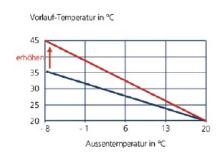
Vorlauftemperatur VT reduzieren, indem eine flachere Heizkurve eingestellt wird.


Faustregel Radiatoren: Eine Absenkung der Heizkurve um 5 °C bewirkt eine um 1 °C tiefere Raumtemperatur.

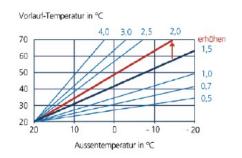
Faustregel Bodenheizung: Eine Absenkung der Heizkurve um 2 °C bewirkt eine um 2 °C tiefere Raumtemperatur.

z.B. Kurve flacher einstellen

z.B. Kurve 1.0 statt 1.5 wählen


2. Raumtemperatur ist bei kalter Witterung (unter 0 °C) zu tief

Vorlauftemperatur VT erhönen, indem eine steilere Heizkurve eingestellt wird.

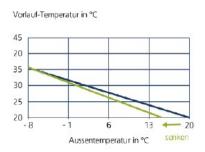

Faustregel Radiatoren: Eine Erhöhung der Heizkurve um 5 °C bewirkt eine um 1 °C höhere Raumtemperatur.

Faustregel Bodenheizung: Eine Erhöhung der Heizkurve um 2 °C bewirkt eine um 2 °C höhere Raumtemperatur.

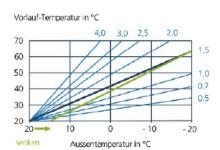
z.B. Kurve steiler einstellen

z.B. Kurve 2.0 statt 1.5 wählen

Heizkurve



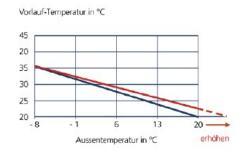
3. Raumtemperatur ist bei warmer Witterung (über 10 °C) zu hoch


Vorlauftemperatur VT reduzieren, indem eine steilere Heizkurve eingestellt wird.

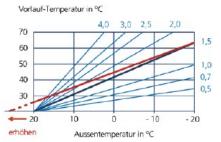
Faustregel: Eine Absenkung der Heizkurve um 3 °C bewirkt eine um 1 °C tiefere Raumtemperatur.

z.B. Kurve steiler einstellen oder Heizgrenze senken

z.B. Heizgrenze senken



4. Raumtemperatur ist bei warmer Witterung (über 10 °C) zu tief


Vorlauftemperatur VT erhönen, indem eine flachere Heizkurve eingestellt wird.

Faustregel: Eine Erhöhung der Heizkurve um 3 °C bewirkt eine um 1 °C höhere Raumtemperatur.

z.B. Kurve flächer einstellen oder Heizgrenze erhöhen

z.B. Heizgrenze erhöhen

Richtgrössen für die Heizgrenze

Die Werte beziehen sich auf eine Raumtemperatur von 20 °C.

•	Ungedämmte Altbauten vor 1977 gebaut	15–17 °C
•	Bauten mit Baujahr 1977 bis 1995	14-16 °C
•	Bauten mit Baujahr 1995 bis 2010	12-15 °C
•	Minergiebauten	9–14 °C
•	Passivhäuser, Minergie-P-Bauten	8–10 °C

Einstellungsänderungen an der Heizgrenze werden am besten im Herbst, bei Aussentemperaturen am Tag um 12 bis 18 °C und möglichst ohne Sonneneinstrahlung vorgenommen und überprüft.

<u>Leitungen in unbeheizten Räumen sind ungedämmt :</u>

5-10% mehr Heizenergieverbrauch

Gegenmassnahme:

Leitungen gemäss geltenden Energievorschriften dämmen.

Rohrnennweite	Zoll	bei λ > 0,03 W/mK	bei λ ≤ 0,03 W/mK	
		bis $\lambda \leq 0.05$ W/mK		
10 – 15	3/8" - 1/2"	40 mm	30 mm	
20 – 32	³ / ₄ " - 1 ¹ / ₄ "	50 mm	40 mm	
40 – 50	11/2" - 2"	60 mm	50 mm	
65 – 80	21/2" - 3"	80 mm	60 mm	
100 – 150	4" - 6"	100 mm	80 mm	
175 – 200	7" - 8"	120 mm	80 mm	

Tabelle 2: Minimale Dämmstärken bei Verteilleitungen der Heizung sowie bei Warmwasserleitungen.

Mögliche Energie-Lecks in der Anlage

Warmwassertemperatur höher als 60°C:

Bis 10% mehr Energieverbrauch für Warmwasser, mehr Kalkablagerungen.

Gegenmassnahme:

Warmwassertemperatur von Fachperson auf 55-60°C begrenzen lassen. Boiler regelmässig entkalken lassen.

Hinweis: Thema Legionellen

Empfohlen: regelmässige Legionellenschaltung

Erneuerbare Energiesysteme - Wärmepumpe

Funktionsprinzip:

Erneuerbare Energiesysteme - Holz

Pellets

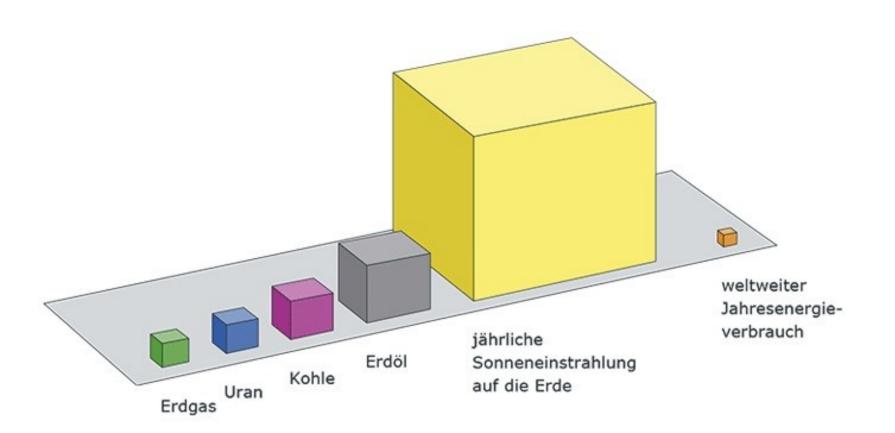
Stückholz

Bildquelle: www.stalder-zaeziwil.ch

Erneuerbare Energiesysteme - Solarthermie

Erneuerbare Energiesysteme - Photovoltaik

Bildquelle: www.stalder-zaeziwil.ch


Solares Potential Schweiz

- Ausschöpfbares Volumen gem. BFE-Studie: 67 Mia. kWh jährlich
- 110% des heutigen Stromverbrauchs
- Jährlicher Zubau verfünffachen von 300 MW auf 1'500 MW

Energieressourcen weltweit



Fazit

- Herausforderungen für alle Beteiligten
- Eigenes Konsumverhalten überdenken

Nützliche Links

- www.energieberatungbern.ch
- www.swissolar.ch
- www.sonnendach.ch
- www.energie.be.ch